试卷六(答案)

- 一、填空题。在题中"___"处填上答案。
- 1、解: _>__

 $2, \quad \underline{M}: \quad (\frac{\partial p}{\partial V_{\rm m}})_{T_c} = 0$

$$\frac{(\frac{\partial^2 p}{\partial V_m^2})_{T_c} = 0}{(\frac{\partial^2 p}{\partial V_m^2})_{T_c}} = 0$$

- 3、解: A
- 二、填空题。在题中"___"处填上答案。
- **1、**解:<u>−34.65 J⋅K⁻¹</u>_
- 2、解: $-38.96 \text{ kJ} \cdot \text{mol}^{-1}$
- 三、是非题。在题后括号内,正确的打"√",错误的打"×"。
- 1、解: 不对
- 2、解: 不对
- 3、解: 是
- 4、解: 不是

四、问答题。请回答下列各题。

- **1、**解: 设系统按照过程 L 由始态 A 变到终态 B,环境由始态 α 变到终态 β ,假如能够设想一过程 L' 使系统和环境都恢复原来的状态,则原来的过程 L 称为可逆过程 。
- **2、**解: 这是一个 $\Sigma_{B}\nu_{B}$ > 0 的反应,添加惰性组分 $H_{2}O(g)$ 可以使平衡向右移动,提高 $C_{6}H_{5}C_{2}H_{3}(g)$ 的平衡含量。
- 五、选择题。在题后括号内,填上正确答案代号。
- 1、解: (1)
- **2、**解: 考虑到有效功 W 不一定为零,故(1)、(2)、(3)、均不完全。 (4)循环过程 $\Delta U = 0$ 正确。
- **3、**解: (3) **4、**解: (2) **5、**解: (1) **6、**解: (2) **7、**解: (2) **8、**解: (1) **9、**解: (1)

六、填作图题。 解: (1)

相区	1	2	3	4	
相态及成分	l(A+B)	s (H ₂ O)+l	l+s (MA·H ₂ O)	$s (H_2O) + s (MA \cdot 3H_2O)$	
相区	(5)	6	7	8	
相态及成分	s (MA·31	H ₂ O)+l l(A+B)	l+s (MA)	$s (MA \cdot 3H_2O) + s (MA)$	

- (2)若把组成 为P的溶液一直冷却到完全固化,其相变过程为: 当由P冷至A时析出 $s(MA·3H_2O)$,由A至B区为 $s(MA·3H_2O)$ 与溶液 两相平衡,到B为冰+ $s(MA·3H_2O)$ +溶液 三相平衡,至C为冰和 $s(MA·3H_2O)$ 两相平衡。
- (3) 组成为P的溶液,在 50 °C时等温蒸发,当由P至Q时,出现s(MA·3H₂O),由QR时为 s(MA·3H₂O)和溶液两相平衡,由R至V时,溶液浓度不断增加,V与U之间为溶液和s(B)两相平衡,至V则完全成纯s(B)。

七、计算题。请计算下列各题。

解:
$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta H}{T\Delta V}$$
, $\frac{\mathrm{d}T}{\mathrm{d}p} = \frac{T\Delta V}{\Delta H}$, $\frac{\Delta T}{\Delta p} \approx \frac{T\Delta V}{\Delta H}$

$$\Delta T = \frac{\Delta V}{\Delta H} \cdot \Delta p \cdot T$$

$$= \left[\left(\frac{1}{1.98} - \frac{1}{2.03} \right) \times 32.06 \times 10^{-6} \right] \times \frac{1}{322} \times \left[(1013 - 101.3) \times 10^{3} \right] \times 369.15 \text{ K}$$

$$= 0.42 \text{ K}$$

八、计算题。请计算下列各题。

解: (1)
$$W = -nRT \ln(V_2/V_1)$$

= $-1 \times 8.314 \times 300 \ln(24.6/5) J = -3974 J$

(2) van der Waals 方程式($p+a/V_{\rm m}^2$) ($V_{\rm m}-b$) = RT

代入
$$W_1 = -\int p \, dV$$
 得:

$$W = -RT \ln \frac{V_2 - b}{V_1 - b} - a \left(\frac{1}{V_2} - \frac{1}{V_1} \right)$$

$$= \left\{ -8.314 \times 300 \ln \left[\left(24.6 - 0.064 \right) / \left(5 - 0.064 \right) \right] - 556.274 \left(1 / 24.6 - 1/5 \right) \right\} J$$

$$= \left(-4000 + 88 \right) J = -3912 J$$

九、计算题。请计算下列各题。

解:
$$(1)p = nRT/V = [10.0 \times 8.314 \times 300.15 / (4.86 \times 10^{-3})]$$
Pa = 5.132 Mpa
 $(2)p = nRT/(V-nb)-n^2a/V^2$
= {[(10×8.314×300.15)/(4.86×10⁻³-10×0.0643×10⁻³)
- (10²×0.5512)/(4.86×10⁻³)²]} Pa
= 3.581 Mpa

十、计算题。请计算下列各题。

解:设 b_B 为质量摩尔浓度, k_b . B为亨利常数, p_B 为分压力:

由已知条件:
$$\frac{b(O_2)}{b(N_2)} = \frac{k_b(N_2)}{k_b(O_2)} \cdot \frac{p(O_2)}{p(N_2)} = \frac{4.89(STP)}{2.33(STP)}$$

$$\frac{k_b(N_2)}{k_b(O_2)} = \frac{4.89}{2.33} \tag{1}$$

在常压空气条件下: $p'(O_2) = k_b(O_2)b'(O_2)$

$$p'(N_2) = k_b(N_2)b'(N_2)$$

$$\frac{b'(O_2)}{b'(N_2)} = \frac{k_b(N_2)}{k_b(O_2)} \cdot \frac{p'(O_2)}{p'(N_2)} = \frac{0.21}{0.79} \frac{k_b(N_2)}{k_b(O_2)}$$
(2)

式 (1) 代入式 (2):
$$\frac{b'(\mathrm{O_2})}{b'(\mathrm{N_2})} = 0.588$$

$$\frac{b'(\mathrm{O_2})}{b'(\mathrm{N_2})} = \frac{n'(\mathrm{O_2})/m(\mathrm{H_2O})}{n'(\mathrm{N_2})/m(\mathrm{H_2O})} = \frac{n'(\mathrm{O_2})}{n'(\mathrm{N_2})} = 0.588$$

十一、计算题。请计算下列各题。

解:

$$A(1)$$
 $A(g)$ $A(g)$

$$\begin{split} p_1 &= 81.06 \text{ kPa} &\xrightarrow{\quad \ \ } p_2 = p_1 \xrightarrow{\quad \ \ } p_3 = p_2 \xrightarrow{\quad \ \ } T_4 = 380 \text{ K} \\ T_1 &= 310 \text{ K} \qquad T_2 = 360 \text{ K} \qquad T_3 = T_2 \qquad p_4 = 50.6625 \text{ kPa} \\ \Delta S_{\text{m,1}} &= C_{p,\text{m,1}} \ln(\text{ T}_2 / \text{T}_1) = \{ \ 75.0 \ln(\ 360 / \ 310) \ \} \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \\ &= 11.215 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \\ \Delta S_{\text{m,2}} &= \Delta_{\text{vap}} H_{\text{m}} / T_2 = (\ 40.0 \times 10^3 / \ 360) \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \\ &= 111.111 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \\ \Delta S_{\text{m,3}} &= \int_{T_3}^{T_4} (C_{p,\text{m,g}} / T) dT - \int_{p_3}^{p_4} (R / p) dp \\ &= \{ \ 30 \ln(380 / \ 360) + (380 - 360) \times 10^{-2} - R \ln(50.6625 / \ 81.06) \ \} \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \\ &= 5.730 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \\ \Delta S_{\text{m}} &= \ \Sigma \Delta S_{\text{m,i}} = 128.06 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \end{split}$$